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Abstract. We use a model, adopted from the theory of core-hole spectra, to explain the
experimentally observed double-peak structures in quantum-well exciton spectra. We also rule
out the hypotheses of the peak-splitting being due to any of the following effects: strong electric
fields in the sample, doping charge accumulation in the well walls and structures in the well due
to the doping-induced deformation of the well potential.

1. Introduction

The system [1–5] we consider here is a GaAs/AlGaAs centre-doped quantum well. The
actual samples, used in the experiments to which we refer, have 50 ideally identical, equally
spaced, quantum wells (QW). The separation between the wells is big enough for the wells
to be considered independent. The doping was performed in a narrow region at the centre
of each well and it is in the form of acceptors which means that the majority carriers in the
wells are holes.

There are three types of carrier: electrons (e), heavy holes (hh) and light holes (lh). The
carrier states are all quantized in the direction perpendicular to the QW plane, but propagate
freely in the plane. The states closest to the band extrema dominate the properties. These
states are schematically represented in figure 1. At low temperatures only heavy-hole states
are occupied. Optical spectra of such a QW are dominated by exciton peaks. There are
several types of exciton: hh excitons, lh excitons and excitons bound to acceptors or other
defects; there may also be more complex formations like bi-excitons. In photoluminescence
(PL) and photoluminescence-excitation (PLE) experiments the peaks from the different types
of exciton can be identified.

Within a certain, rather narrow, range of doping levels these peaks are split into pairs
[6]. It is with this splitting that we are concerned in this work. The splitting, of roughly
4 meV, is too large to be explained by bi-exciton formation, which would produce a splitting
of around 1 meV [6]. We believe that the splitting is due to a shake-up effect caused by
the sudden creation of the exciton potential in the heavy-hole gas. This is analogous to the
interpretation of the observed effects in absorption and emission experiments on deep core
levels in metals; there, the sudden appearance or disappearance of the core-hole potential
shakes up the conduction electrons and results in plasmon replication. In section 2 we study
the possibility that shake-up effects cause the splitting and obtain a double-peak structure
with a splitting of the right order of magnitude.

In section 3 we deal with some other possible explanations of the double-peak structures
and demonstrate that the effects are too weak to reproduce the experimental findings. Finally,
section 4 contains a summary and conclusions.

0953-8984/96/469071+11$19.50c© 1996 IOP Publishing Ltd 9071
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(a) (b)

Figure 1. A schematic diagram of the quantum well and the particle states involved. In (a) are
indicated the band extrema obtained as a result of the ‘particle in a box quantization’. The band
structure in the quantum well plane is shown in (b). The shaded area denotes the occupied part
of the heavy-hole band.

2. Shake-up effects

The effects we present here are the results of plasmon shake-up. When the exciton is formed
in the PLE experiment there is suddenly created a potential in the gas of heavy holes. This
potential shakes up the hole-gas and this results in the emission of plasmons. We use a
model to describe this that is basically the same as the one used by Langreth [7] for the
core-hole problem in the seventies. In connection with this it may also be of interest to the
reader to study the problem of the orthogonality catastrophe proved by Anderson [8] and
the Mahan–Nozìeres–de Dominicis theory for the absorption edge singularity [9, 10].

We use the crude assumption that the exciton in the shake-up process does not recoil;
its centre of mass remains unchanged and the exciton remains in its ground state. This was
also assumed for the core hole. The validity of this assumption here can be questioned,
since the exciton is not very heavy compared to the gas of free carriers. Nevertheless
we make this assumption and it is needed to make the calculations feasible. In the PL
experiments the sudden disappearance of the exciton potential has a similar effect on the
hole-gas, namely that plasmons are emitted. Under the assumption that the plasmons all
have the same energy the model is easy to solve and it produces a series of peaks, equally
spaced, with amplitude given by the Poisson distribution. Depending on the strength of
the coupling to the plasmons there may be any number of peaks. In a three-dimensional
system the plasmon dispersion curve starts out for small momenta at a finite energy and
shows a moderate dispersion. Thus the approximation of a constant plasmon energy is not
very severe. In our system, which is quasi-two-dimensional, the plasmon dispersion starts
out at zero energy and has a square-root-dependence on momentum. Thus, the assumption
of a constant plasmon energy is not useful, if not for some reason one particular plasmon
mode were to dominate. This means that we have to go beyond the simplest version of the
model.

We use the following model Hamiltonian for the system:

H = εC†
eCe + C†

eCeV + Hh

whereε, C
†
e , Ce, V andHh are the exciton energy, the creation operator for the exciton, the
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destruction operator for the exciton, the interaction potential for the interaction between the
exciton and holes and the Hamiltonian for the holes, respectively. The operatorsV andHh

contain creation and destruction operators for the holes and no exciton operators. We have

ne = C†
eCe [ne, H ] = 0

wherene is the exciton number operator.
In the ground state of the system there is no exciton and the holes are in their ground

state. Let us introduce the Hamiltonians

H(0) = Hh

H(1) = ε + V + Hh.

Let |0〉 denote the ground state ofH . It is also the ground state ofH(0). Then we have

Hh|0〉 = Eh
0 |0〉

H |0〉 = Eh
0 |0〉

H(0)|0〉 = Eh
0 |0〉

whereEh
0 is the ground state energy of the holes. In our choice of ground state the function

G>(ω) =
∫ ∞

−∞
dt eiωtG>(t)

where

G>(t) = 〈0|Ce(t)C
†
e (0)|0〉

is the density of states for the exciton. This is the quantity we need to calculate. Using the
fact that there is no exciton in the ground state gives

G>(t) = 〈0|eiHt/h̄Ce−iHt/h̄C†|0〉 = ei(Eh
0−ε)t/h̄〈0|e−i(V +Hh)t/h̄|0〉.

It is now time to define ourV and the rest of the Hamiltonian. We assume that the structure
in the exciton peaks is due to plasmon excitations. The plasmons are collective excitations of
the quasi-2D heavy-hole gas. The excitation spectrum of the gas is given by the dynamical
structure factor, which is related to the dielectric function according to

S(q, ω) = − h̄κ

nvq

Im ε−1(q, ω)

for a semiconductor with background dielectric constantκ. Here n = N/A; that is, the
average hole density and the dielectric function is that for a quasi-2D hole gas. The structure
factor is non-zero in two regions; one region is where hole–electron pairs are excited;
the other is the plasmon dispersion curve. We neglect the pair excitations here and only
include the plasmons. The plasmons are massless bosons. We get the following effective
Hamiltonian:

H ′ = V + Hh = − 1

A1/2

∑
q

g(q)ρ†
e (q)(cq + c

†
−q) +

∑
q

h̄ωq(c
†
qcq + 1

2)

whereg(q) is the hole–plasmon coupling constant and the exciton density operator is

ρ†
e (q) =

∫
d3r eiq·r ∑

j

Zj δ(r − Rj ) =
∑

j

Zj eiq·Rj = eiq·Rh − eiq·Re

ρe(q) =
∫

d3r e−iq·r ∑
j

Zj δ(r − Rj ) =
∑

j

Zj e−iq·Rj = e−iq·Rh − e−iq·Re .
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We treat the exciton as a classical particle; that is, the exciton operators arec numbers.
Since there is no kinetic energy term for the exciton the Hamiltonian can be diagonalized.
This is achieved by using the following unitary transformation:

U = exp

( ∑
q

f †(q)(cq − c
†
−q)

)
where

f †(q) = f (−q) = g(q)

A1/2h̄ωq
ρ†

e (q).

This leads to

UH ′U † =
∑

q

h̄ωq(c
†
qcq + 1

2) + 1ε

where

1ε = − 1

A

∑
q

|g(q)|2
h̄ωq

ρ†
e (q)ρe(q) = − 1

A

∑
q

2|g(q)|2
h̄ωq

{1 − cos[q · (Re − Rh)]}.

Thus, we see that the ground state of the system with the exciton present is the ground state
of the plasmons (the same type of plasmons with the same dispersion as before) and there
has been a shift,1ε, in the energy. This shift is the relaxation energy; the gain in energy
when the holes relax around the exciton. Also this ground state has no plasmons excited.
Let us now return to our Green function

G>(t) = ei(Eh
0−ε)t/h̄〈0|e−i[H ′]t/h̄|0〉.

Straightforward, but tedious, manipulations lead to

G>(t) = e−i(ε/h̄+1ε/h̄)t exp

(
−

∑
q

|f (q)|2(1 − e−iωq t )

)
.

We want the Fourier-transformed version. It is

G>(ω) =
∫ ∞

−∞
dt eiωtG>(t) =

∫ ∞

−∞
dt ei(ω−ε/h̄−1ε/h̄)teB(t)

where the so-called satellite generator is defined as

B(t) = −
∑

q

|f (q)|2(1 − e−iωq t ).

In the unperturbed case, namely when there is no interaction between the exciton and the
plasmons, we have

G>
0 (ω) =

∫ ∞

−∞
dt ei(ω−ε/h̄)t =

∫ ∞

−∞
dt eiωtG>

0 (t).

We can write

G>(ω) =
∫ ∞

−∞
dt eiωtG>

0 (t) eC(t)

where

C(t) = B(t) − i1εt/h̄ = −
∑

q

|f (q)|2(1 − iωqt − e−iωq t )

= − 1

A

∑
q

|g(q)|2|ρe(q)|2
(h̄ωq)2

(1 − iωqt − e−iωq t )
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In a strictly 2D system the hole–plasmon coupling constant,g(q), is found from the
identification

|g(q)|2δ(ω − ωq) = v2D
q

κ
δ[Reε2D(q, ω)] = v2D

q

κ

δ(ω − ωq)

|(d/dω)(α2D
0 (q, ω)/κ)|ω=ωq

.

Thus, the coupling constant is identified as

|g(q)|2 = v2D
q

|(d/dω)α2D
0 (q, ω)|ω=ωq

whereα2D
0 (q, ω) is the polarizability of the hole gas. We use the pure RPA (random phase

approximation) expression for this quantity and the plasmon dispersion curve is traced out
numerically.

We see that the background dielectric screening has no direct effect. Indirectly, however,
it has an effect since the plasmon dispersion curve depends on the screening. Now in a
quasi-2D systemvq acquires aq-dependent correction factor due to the finite extension of
the wavefunctions perpendicular to the 2D plane. This factor appears both in the numerator
and in the denominator of the expression for the coupling constant. Thus the factors cancel,
but of course the correction factor affects the plasmon dispersion. Thus, it comes into play
in the same way as does the background screening.

The wavefunction perpendicular to the well can, for all the three types of carrier entering
the present problem, to a good approximation be represented by a cosine function whose
wavelength is equal to twice the well width. Thus the two-dimensional Fourier transform
of the Coulomb potential is replaced according to

v2D
q = 2πe2

q
⇒ v2D

q

(
2

π

)2 ∫ π/2

−π/2
dϕ

∫ π/2

−π/2
dϕ′ cos2(ϕ) e−q|ϕ−ϕ′|width/π cos2 ϕ′.

The quasi-2D character of the system also means that heavy holes can be excited into the
light-hole band and into more bands further down in the valence-band well. Thus there are
inter-band transitions. If these are included they have the effect that the plasmon dispersion
is deformed and pushed somewhat downwards and kept below the region of inter-band
transitions. We have not taken this effect into account here. We have neglected inter-band
transitions altogether.

Now, we need to determine|ρe(q)|2. For the ground state of an exciton we have

8(r) = 23/2

√
πa

e−2r/a n(r) = 23

πa2
e−4r/a a = h̄2κ

mrede2

where8(r), n(r) and a are the wavefunction, the probability density and effective Bohr
radius, respectively. The distancer is here the distance between the electron and hole. The
contribution to the exciton spectra from plasmons with wavevectorq, if the electron and
hole had specific positions in space with the separation given byr, was above found to be
determined by

|ρe(q)|2 = 2[1 − cos(q · r)].

The exciton wavefunction is built up by many possible configurations of the electron and
hole positions. The probability distribution for a separationr is given by n(r). The
probability distribution is spherically symmetrical. The net contribution for the exciton
is given by

|ρe(q)|2 =
∫ ∞

0
dr

∫ 2π

0
dϕ

23

πa2
r e−4r/a2[1 − cos(qr cosϕ)].
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Now, we have everything we need to calculate the exciton excitation spectra. If we use the
unperturbed exciton energy as our zero of reference we get

D(ω) =
∫ ∞

−∞
dt eiωteC(t) =

∫ ∞

−∞
dt exp

(
iωt − 1

A

∑
q

|g(q)|2|ρe(q)|2
(h̄ωq)2

(1 − iωqt − e−iωq t )

)
.

Let

a(t) = 1

A

∑
q

|g(q)|2|ρe(q)|2
(h̄ωq)2

[1 − cos(ωqt)]

1ε = − 1

A

∑
q

|g(q)|2|ρe(q)|2
(h̄ωq)

b(t) = 1

A

∑
q

|g(q)|2|ρe(q)|2
(h̄ωq)2

sin(ωqt).

Then we have

D(ω) =
∫ ∞

−∞
dt e[iωt−a(t)−i1εt/h̄−ib(t)] =

∫ ∞

−∞
dt e−a(t) ei[ωt−1εt/h̄−b(t)]

= 2
∫ ∞

0
dt e−a(t) cos[ωt − 1εt/h̄ − b(t)].

The experimental peaks have a finite width,Wp, which is due to combined effects from
experimental broadening, broadening due to pair excitations and broadening due to the
finite life-time of the exciton. We simulate this (this is not entirely strict) by introducing
an exponentially decaying factor into the integrand. This procedure also improves the
numerical accuracy and reduces the computer time. The final result is

D(ω) = 2
∫ ∞

0
dt e−Wpt/2h̄e−a(t) cos[ωt − 1εt/h̄ − b(t)].

In figure 2 we give our numerical results for a light-hole exciton, at different doping densities
in the range within which the double-peak structure is found experimentally. We have
assumed thatWp is 1.7 meV, which is the value found from the experiments.

The area under each curve is 2π . There are never more than two peaks, in agreement
with experiments. It can be seen that the splitting increases with doping level. For the
highest doping levels the splitting is larger than that in the experiments. Inclusion of inter-
band transitions in the dielectric function for the quasi-2D hole gas would probably prevent
this discrepancy. It is not possible to find out from the experiments which of the two
peaks is the largest; this varies depending on which recombination channel is chosen as the
detection channel.

We mentioned in section 1 that the separation of the wells is big enough for the wells
to be considered independent. However, plasmons of long wavelength are sensitive to
coupling between wells since the fields from these plasmons extend long distances in the
direction perpendicular to the well planes. Thus, one has to be careful in neglecting the
coupling when plasmons are involved. We made a rough estimate of the effect of the
coupling between neighbouring wells in the following way. We studied two wells separated
by 300 Å, which is the actual separation between the wells in the samples. The coupling
between two wells is determined by the factor exp(−2qd), for the wavenumberq and
separationd. In our calculation the whole plasmon branch contributes to the spectrum,
but we here make the assumption that the plasmon with energy equal to the separation
between the two peaks dominates. For our three samples with doping densities 1× 1011,
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Figure 2. The predicted light-hole PL peak for samples with doping concentrations 1×1011 cm−2

(full curve), 2× 1011 cm−2 (chain curve) and 3× 1011 cm−2 (dotted curve). In each curve the
rightmost weaker peak is due to plasmon shake-up processes. It contains contributions from
processes whereby any number of any of the different plasmons have been excited. All curves
are relative to the position without the plasmon interactions. The main peak is shifted downwards
in energy by the interactions but the centre-of-mass of the spectrum remains unchanged.

2× 1011 and 3× 1011 cm−2, we found the exponential factors to be 0.006, 0.002 and 0.001,
respectively, for the dominating plasmon. Thus, this demonstrates that the coupling is very
weak. For two wells at large separation there are two degenerate plasmon branches. These
are split when the separation between the wells is reduced and the size of this splitting is
an alternative measure of the effect of the coupling. We found that this splitting is 0.1 meV
for all three samples, which can be considered negligible. In the case of 50 wells the effect
of the coupling will probably be that the plasmon branch is replaced by a band of plasmons
with an energy width of roughly 0.1 meV. Since all plasmons contribute and the spread in
plasmon energy is larger for plasmons with longer wavelengths the detailed shape of the
second peak in the spectra could be slightly modified by the coupling between the wells.
We leave this for a possible future extension of the theory.

3. Effects of a strong electric field, doping charge accumulation and well-potential
deformation due to the centre doping

An electric field perpendicular to a quantum well tilts the bottom of the well. This has two
effects: the energy separation between the states in the conduction-band and valence-band
wells is changed, resulting in an energy shift of the PL peaks; and the electron and hole
wavefunctions are spatially shifted in different directions along the field direction, leading
to a reduction in the overlap and hence a suppression of the luminescence intensity. This
is known as the confined Stark effect [12–14].
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Figure 3. The actual valence-band quantum well for a heavily doped sample with a doping
concentration of 1× 1019 cm−3 and an external electric field of 20 kV cm−1. Since the doping
is homogeneously distributed within a layer of 30Å at the centre of the well the 2D doping
concentration is 3× 1011 cm−2. The horizontal lines are the band extrema for the two types of
hole band and the corresponding perpendicular wavefunctions squared are shown, representing
the corresponding carrier distributions perpendicular to the well plane.

The actual system we consider consists of 50 quantum wells in parallel. All of the
wells are intended to be identical. If all of the wells experience the same field strength then
the experimental exciton peaks, which have contributions from all of the wells, are shifted
in energy. If the field strength varies from well to well one would imagine that the result
would be a broadening of the exciton peaks and not a splitting of each peak into two, as is
found experimentally. The splitting suggests that there are two field strengths rather than
a distribution of field strengths in the sample. One could imagine that the outermost wells
might experience a different field strength than do the majority of the wells in the centre. If
this were the case the intensity of one of the peaks would be just some few per cent of that
of the other. This is not observed, though. Also the fact that the splitting occurs just for
samples within a narrow range of doping densities militates against the explanation of the
splitting as being due to two different field strengths in the sample. We are instead looking
for a splitting of the peaks, within each single well—a splitting that depends on the doping
concentration, perhaps in combination with an external field.

Each QW is 150Å wide and a layer of roughly 30̊A in the centre of each well is
p-type doped. This doping is the source that provides the holes for the hh band. When the
acceptors are ionized the holes are distributed within the well but the ions are still confined
to the narrow region in the centre of the well. Thus there is a re-distribution of charge or
a charge separation in the well. For heavy doping the well potential is not as simple as
that sketched in figure 1. The charge separation leads to a deformation of the bottom of



Plasmon shake-up in quantum-well exciton spectra 9079

Figure 4. The actual conduction-band quantum well for the same sample as in figure 3.
The horizontal lines are the band extrema for the two lowest electron bands and the
corresponding perpendicular wavefunctions squared are shown, representing the corresponding
carrier distributions perpendicular to the well plane.

the well (or of the top, depending on how we look upon the valence-band well). A ‘valley’
is formed. In the conduction band a corresponding barrier is formed. These structures, if
they are important enough, could lead to a dramatic change in the quantized levels. In the
conduction band one may imagine that there are two levels below the top of the barrier,
one on each side. What would actually happen in that situation if the well were symmetric
is that there would be one symmetrical and one anti-symmetrical solution. The solutions
would have slightly different energies. If a strong electric field were to act perpendicular
to the well plane the splitting between the levels would increase. This would mean that
there are two excitons with different energies since there would be two different electron
states that can participate in the exciton formation. It is impossible to know whether this is
a plausible explanation before the actual calculations have been done.

There is also another possible explanation, namely the following. When the sample is
grown there is always a tendency for the doping atoms to be dragged along with the surface
growth boundary. As a result a fraction of the doping atoms is accumulated at one of the
QW walls. We have also modelled this and found that the effect is very similar to that of
an applied electric field.

In both these cases we start with a guessed potential, then solve the Schrödinger equation
numerically to find the energy levels and wavefunctions. Then we determine the occupation
numbers for the bands in accordance with the actual temperature. This gives the charge
density. Then, with the help of the Poisson equation we calculate the potential. We repeat
this procedure in iteration until everything converges. In order to find convergence we have
to use a sensitive way to include a mixture of the old and new potentials at each step of
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the iteration, otherwise results from the different iterations will oscillate. The results for
an applied electric field of 20 kV cm−1 are shown in figures 3 and 4 for a sample with a
doping density of 1× 1019 cm−3, which corresponds to a 2D density of 3× 1011 cm−2.
Figures 3 and 4 are for the valence and conduction bands, respectively.

Figure 5. The same as figure 3 except that here there is no external field present. Instead 25%
of the acceptors have been removed from the doped region in the centre and put at the position
of the left-hand well wall.

We note that the re-distribution of the carriers leads to a weakening of the effective
field by roughly one third. We also note that the barrier in the conduction band well is too
weak to make the two levels nearly degenerate. All levels are above the barrier. However,
we also find that the valence band will have a double-valley structure at this high a field
strength, but the structure is too weak to lead to a degeneracy. We have also performed
calculations at 50 kV cm−1 and there is still no degeneracy or near degeneracy.

In figure 5 we present the result for the valence-band QW when we have no applied
field, but instead have let 25% of the doping atoms be accumulated at the left-hand wall of
the well. The result looks much the same as it does for an applied field of 50 kV cm−1. We
see that there is no tendency towards a degeneracy. The highest hole band has moved up
from the valleys. Thus, we have found that neither a strong electric field nor a re-distribution
of the doping atoms can explain the peak splitting found in the experiments.

4. Summary and conclusions

We have tested several different explanations for the splitting of the peaks in exciton spectra
from p-type centre-doped GaAs/AlGaAs quantum wells. The barrier and valley formed in
the conduction- and valence-band wells due to the doping were found to be too weak to
cause the splitting. An applied electric field perpendicular to the well planes caused a
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double-valley structure in the valence-band well. If two hole states were trapped in this
double-valley structure, one in each valley, this could possibly cause the splitting. We found
that the structure is too weak to trap two hole states. Accumulation of dopants at one of the
well walls had an effect similar to that of an applied field and was found not to be capable
of causing the splitting.

We also tested a dynamic explanation for the splitting, namely that the splitting is
caused by shake-up effects in the excitation and de-excitation processes. When the exciton
is formed the sudden appearance of the exciton potential causes a shock on the hole gas.
This results in emission of plasmons; in the present system these are quasi-2D plasmons.
We used a model developed for the core-hole problem to treat these effects. We found a
double-peak structure with a splitting of the right order of magnitude. We found just two
peaks, as in the experiments, although the model could have produced any number of peaks.
At the high-doping limit the splitting is larger than the experimental values. An explanation
for this discrepancy might be that we have not taken into account the effects of inter-band
transitions. Inclusion of these should force the plasmon dispersion curve to stay below the
inter-band electron-hole–pair continuum and thereby counteract an increase in the splitting
for higher doping concentrations. We think that the plasmon shake-up effect is a plausible
explanation for the experimentally observed effects.
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